搜索结果: 1-15 共查到“几何学 PROJECTIVE”相关记录30条 . 查询时间(0.171 秒)
ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES
PARABOLIC GEOMETRIES PROJECTIVE
2015/10/14
We use the general theory developed in our article [1]
in the setting of parabolic geometries to reprove known results on
special innitesimal automorphisms of projective and conformal
geometries.
CONVEX REAL PROJECTIVE STRUCTURES ON CLOSED SURFACES ARE CLOSED
REAL PROJECTIVE STRUCTURES CLOSED SURFACES
2015/9/29
T. The deformation space t(E) of convex Rp2_ structures on a closed
surface Y with X(z) < 0 is closed in the space Hom(7r, SL(3, IR))/SL(3, IR)
of equivalence classes of representations r1 (l) -- ...
Einstein metrics in projective geometry
projective differential geometry Einstein metrics conformal differential geometry
2012/7/11
It is well known that pseudo-Riemannian metrics in the projective class of a given torsion free affine connection can be obtained from (and are equivalent to) the solutions of a certain overdetermined...
Einstein metrics and Yamabe invariants of weighted projective spaces
Einstein metrics Yamabe invariants weighted projective spaces Differential Geometry
2012/6/25
An orbifold version of the Hitchin-Thorpe inequality is used to prove that certain weighted projective spaces do not admit orbifold Einstein metrics. Also, several estimates for the orbifold Yamabe in...
Extremal Kahler metrics and energy functionals on projective bundles
Extremal Kahler metrics energy functionals projective bundles
2011/9/21
Abstract: In this paper, we prove the equivalence of the existence of extremal Kahler metrics and the properness of the modified K energy on projective bundles. Moreover, we discuss the relations of t...
The Kahler-Ricci flow on projective bundles
The Kahler-Ricci flow projective bundles Differential Geometry
2011/9/1
Abstract: We study the behaviour of the K\"ahler-Ricci flow on projective bundles. We show that if the initial metric is in a suitable K\"ahler class, then the fibers collapse in finite time and the m...
Characterizations of projective spaces and hyperquadrics
Characterizations of projective spaces hyperquadrics
2011/2/25
Projective spaces and hyperquadrics are the simplest projective algebraic varieties, and they can be characterized in many ways. The aim of this paper is to provide a new characterization of them in t...
We characterize conjugate nonparametric Bayesian models as projective limits of conjugate, nite-dimensional Bayesian models. In particular, we identify a large class of nonparametric models represent...
The varieties of tangent lines to hypersurfaces in projective spaces
varieties of tangent lines hypersurfaces projective spaces
2011/1/20
or a hypersurface in a projective space, we consider the set of pairs of a point and a line in the projective space such that the line intersects the hypersurface at the point with a fixed multiplicit...
The translation operator for self-projective coalgebras
translation operator self-projective coalgebras
2011/1/17
We describe the transpose operator for self-projective and symmetric coalgebras in terms of the syzygy and Nakayama functors.
Projective completions of affine varieties via degree-like functions
Projective completions of affine varieties degree-like functions
2011/1/18
We introduce and study a class of projective completions of ane algebraic varieties which generalize the construction of toric varieties from convex rational polytopes.
Characterizations of Projective Spaces and Hyperquadrics via Positivity Properties of the Tangent Bundle
Characterizations of Projective Spaces Hyperquadrics Positivity Properties Tangent Bundle
2011/1/20
Let X be a smooth complex projective variety. A re-cent conjecture of S. Kov´acs states that if the pth-exterior power of the tangent bundle TX contains the pth-exterior power of an am-
ple vec...
Grafting Real Complex Projective Structures with Fuchsian Holonomy
Grafting Real Complex Projective Structures Fuchsian Holonomy
2011/1/20
Let G(S, ρ) be a graph whose vertices are complex projective struc-tures with holonomy ρ and whose edges are graftings from one vertex to another. If ρ is quasi-Fuchsian, a theorem of Goldman implies ...
Some comments on projective quadrics subordinate to pseudo--Hermitian spaces
Some comments projective quadrics subordinate pseudo--Hermitian spaces
2011/1/17
We study in some detail the structure of the projective quadric Q′obtained by taking the quotient of the isotropic cone in a standard pseudohermitian space Hp,q with respect to the positive real numbe...
Scalar curvature and asymptotic Chow stability of projective bundles and blowups
Scalar curvature asymptotic Chow stability projective bundles blowups
2010/12/14
The holomorphic invariants introduced by Futaki as obstruction to the asymptotic Chow semistability are studied by an algebraic-geometric point of view and are shown to be the
Mumford weights of suit...