管理学 >>> 统计学 >>> 统计学史 理论统计学 统计法学 描述统计学 经济统计学 科学技术统计学 社会统计学 环境与生态统计学 国际统计学 统计学其他学科
搜索结果: 1-12 共查到统计学 Domains相关记录12条 . 查询时间(0.046 秒)
Domains of attraction and moments      Domains  attraction  moments        2009/9/24
The limit behaviour of scalar modifications of powers of probability measures under a generalized convolution is considered. In particular, some necessary and sufTtcient wnditions in terms of momen...
A supplementary characterization of Banach spaces in terms of conditions on the tail behavior of L h y measurcs is given. A criterion for attraction to a stable law in the operator setting IS prove...
Domains of attractions of stable measures on the Heisenberg group。
Suppose X, XI, X,, ... are i.i.d. random vectors, S, = z:= Xi and A, are linear operators such that A, S, converges in law to some full random vector I: Then we say that X belongs to the shkt gener...
We show that a random variable X lies in the strict domain of attraction of a non-degenerate strictly stable random variable Z with exponent ~a]O,2[ iff the q-transform of X lies in the strict doma...
The theory of stable probability distributions and their domains of attraction is derived in a direct way (avoiding the usual route via infinitely divisible distributions) using Fourier transforms. ...
Let (X,) be a squence of independent real vatued random variabl~sA. suitable convergk:nce condition far affine normalimned maxima of (XJ k @given in the seBLjstable setup, i.e. fur inmasing samplir...
We give sharp global estimates for the Green function, Martin kernel and Poisson kernel in Lipschitz domains for symmetric a-stable processes. We give some applications of the estimates.
A Lkvy process on Rd with distribution p at time 1 is denoted by X") = {xi'")]I.T the improper stochastic integral f (s] d ~ : f io)f f with respect to Xtd is definable, its distribulion is denote...
On Confidence Bands for Time Series Problems in the Time and Frequency Domains
We give a simple proof that in a Lipschitz domain in two dimensions with Lipschitz constant one, there is pathwise uniqueness for the Skorokhod equation governing reflecting Brownian motion.
We give a simple proof that in a Lipschitz domain in two dimensions with Lipschitz constant one, there is pathwise uniqueness for the Skorokhod equation governing reflecting Brownian motion.

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...