¹ÜÀíѧ >>> ͳ¼Æѧ >>> ÀíÂÛͳ¼Æѧ >>> ͳ¼Æµ÷²é·ÖÎöÀíÂÛ Í³¼ÆºËËãÀíÂÛ Í³¼Æ¼à¶½ÀíÂÛ Í³¼ÆÔ¤²âÀíÂÛ Í³¼ÆÂß¼­Ñ§ ÀíÂÛͳ¼ÆѧÆäËûѧ¿Æ
ËÑË÷½á¹û: 1-3 ¹²²éµ½¡°ÀíÂÛͳ¼Æѧ associated random variables¡±Ïà¹Ø¼Ç¼3Ìõ . ²éѯʱ¼ä(0.06 Ãë)
We study the almost sure convergence of weighted averages of associated and negatively associated random variables. Our theorems extend and generalize strong laws of large numbers for positively an...
The aim of this note is to prove the strong version of the CLT for associated sequences without any strong approximation theorems. In the proofs we only apply the weighted convergence result for av...
We prove the Marcinkiewicz-Zygmund SLLN (MZ- -SLLN) of order p, ~ € 1 12,[ , br associated sequences, not necessarily stationary. Our assumption on the moment of the random variables is minimal. We...

ÖйúÑо¿Éú½ÌÓýÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÖйúѧÊõÆÚ¿¯ÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÊÀ½ç´óѧ¿ÆÑлú¹¹ÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

Öйú´óѧÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÈË¡¡Îï-ƪ

ÕýÔÚ¼ÓÔØ...

¿Î¡¡¼þ-ƪ

ÕýÔÚ¼ÓÔØ...

ÊÓÌý×ÊÁÏ-ƪ

ÕýÔÚ¼ÓÔØ...

ÑÐÕÐ×ÊÁÏ -ƪ

ÕýÔÚ¼ÓÔØ...

֪ʶҪÎÅ-ƪ

ÕýÔÚ¼ÓÔØ...

¹ú¼Ê¶¯Ì¬-ƪ

ÕýÔÚ¼ÓÔØ...

»áÒéÖÐÐÄ-ƪ

ÕýÔÚ¼ÓÔØ...

ѧÊõÖ¸ÄÏ-ƪ

ÕýÔÚ¼ÓÔØ...

ѧÊõÕ¾µã-ƪ

ÕýÔÚ¼ÓÔØ...