>>> 哲学 经济学 法学 教育学 文学 历史学 理学 工学 农学 医学 军事学 管理学 旅游学 文化学 特色库
搜索结果: 1-11 共查到Group-Lasso相关记录11条 . 查询时间(0.054 秒)
We consider the group lasso penalty for the linear model. We note that the standard algorithm for solving the problem assumes that the model matrices in each group are orthonormal. Here we consider a ...
A SPARSE-GROUP LASSO     penalize  regularize  regression  model  nesterov       2015/8/21
For high dimensional supervised learning problems, often using problem specific assumptions can lead to greater accuracy. For problems with grouped covariates, which are believed to have sparse effect...
We introduce a method for learning pairwise interactions in a linear regression or logistic regression model in a manner that satisfies strong hierarchy: whenever an interaction is estimated to be non...
We consider a regularized least squares problem, with regularization by structured sparsity-inducing norms, which extend the usual $\ell_1$ and the group lasso penalty, by allowing the subsets to over...
We consider the problem of estimating a function $f_{0}$ in logistic regression model. We propose to estimate this function $f_{0}$ by a sparse approximation build as a linear combinaison of elements ...
针对压缩感知算法在分布式MIMO雷达参数估计性能上易受噪声影响而出现伪峰、定位不准等问题,结合目标散射系数所满足块稀疏的前提条件,提出了一种基于Group lasso模型框架下压缩感知算法的参数估计。Group lasso作为一种块稀疏模型,可以有效解决感知算法在低SNR时参数估计性能差的问题,有效抑制了噪声对稀疏信号的破坏,其性能明显优于感知算法中常用的凸松弛CVX方法。此外针对MIMO雷达目标...
The group lasso is a penalized regression method, used in regression problems where the covariates are partitioned into groups to promote sparsity at the group level. Existing methods for finding the ...
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic process corrupted by an additive noise. We propose to estimate the covariance matrix in a high-dimensiona...
The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish...
We consider the group lasso penalty for the linear model. We note that the standard algorithm for solving the problem assumes that the model matrices in each group are orthonormal. Here we consider ...
We establish estimation and model selection consistency, prediction and estimation bounds and persistence for the group-lasso estimator and model selector proposed by Yuan and Lin (2006) for least squ...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...