>>> 哲学 经济学 法学 教育学 文学 历史学 理学 工学 农学 医学 军事学 管理学 旅游学 文化学 特色库
搜索结果: 1-15 共查到Ricci相关记录81条 . 查询时间(0.059 秒)
In this talk we show that bounded harmonic functions are constant on gradient shrinking Ricci solitons with CSC by frequency function method. As an application, we show that the space of harmonic func...
We will construct some new examples of steady gradient Ricci solitons with positive curvature operator. Moreover, for any 3D steady gradient Ricci soliton with positive curvature, if it is asymptotic ...
We prove that any K?hler Ricci shrinker surface has bounded sectional curvature. Combining this estimate with earlier work by many authors, we provide a complete classification of all K?hler Ricci shr...
The Ricci flow is a powerful tool in geometry to construct the canonical metric on a given manifold. It can be viewed as a nonlinear heat flow of the Riemannian metric and may develop finite time sing...
2017年月20日下午,法国SourceLAB公司首席技术官Aurélien Ricci博士应邀到上海理工大学光电学院做了题为“创新性飞秒激光和靶体技术:面向未来的激光与等离子体相互作用”的学术报告。光电学院教师、研究生和本科生聆听了此次讲座,讲座由光电信息与计算机工程学院刘一教授主持。Aurélien Ricci博士在这次讲座中首先介绍了SourceLAB公司的创业历程、发展动态和法国科学院应用...
The paper attempts to show how the Logical Empiricists’ interpretation of the relation between geometry and reality emerges from a “collision” of mathematical traditions. Considering Riemann’s work as...
本文首先给出了具有渐近非负Ricci曲率流形的体积比较定理. 然后给出了流形在一定的曲率衰减的条件下为有限拓扑型的引理,最后利用Abresch-Gromoll估计, 给出了具有渐近非负Ricci曲率和无穷远处二次曲率衰减的流形的有限拓扑型条件.
This paper is concerned with properties of maximal solutions of the Ricci and cross curvature flows on locally homogeneous three-manifolds of type SL2(R). We prove that, generically, a maximal solut...
In this paper, we first derive a pinching estimate on the traceless Ricci curvature in term of scalar curvature and Weyl tensor under the Ricci flow. Then we apply this estimate to study...
We prove Gaussian type bounds for the fundamental solution of the conjugate heat equation evolving under the Ricci flow. As a consequence, for dimension 4 and higher, we show that the backward ...
In this paper, we first apply an integral identity on Ricci solitons to prove that closed locally conformally flat gradient Ricci solitons are of constant sectional curvature. We then ge...
The paper considers a manifold M evolving under the Ricci ow and establishes a series of gradient estimates for positive solutions of the heat equation on M. Among other results, we prove Li-Yau-ty...
This paper is concerned with properties of maximal solutions of the Ricci and cross curvature flows on locally homogeneous three-manifolds of type SL2(R). We prove that, generically, a maximal...
In this paper, we study the backward Ricci flow on locally homogeneous 3-manifolds. We describe the long time behavior and show that, typically and after a proper re-scaling, there is converge...
In this paper, we derive a general evolution formula for possible Harnack quantities. As a consequence, we prove several differential Harnack inequalities for positive solutions of backward hea...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...