>>> 哲学 经济学 法学 教育学 文学 历史学 理学 工学 农学 医学 军事学 管理学 旅游学 文化学 特色库
搜索结果: 1-15 共查到reinforcement learning相关记录23条 . 查询时间(0.078 秒)
本次讲座主要针对智能运维中的建模优化问题。首先基于前期研究,我将讨论基于马尔可夫决策过程的有限周期的视情维护策略。考虑二元件系统以及系统元件的退化过程具有随机相关性,用二元伽马过程来描述系统退化过程。系统元件服从周期性检测,当元件的退化程度超过预防性维护阈值时,其会被替换。该维护问题可以表示成马尔可夫决策过程并可用动态规划来求解。不同于无限周期的维护策略,有限周期的最优策略是动态的,其在每次检测都...
本次讲座主要针对智能运维中的建模优化问题。首先基于前期研究,我将讨论基于马尔可夫决策过程的有限周期的视情维护策略。考虑二元件系统以及系统元件的退化过程具有随机相关性,用二元伽马过程来描述系统退化过程。系统元件服从周期性检测,当元件的退化程度超过预防性维护阈值时,其会被替换。该维护问题可以表示成马尔可夫决策过程并可用动态规划来求解。不同于无限周期的维护策略,有限周期的最优策略是动态的,其在每次检测都...
Electronic health records (EHR) have provided a great opportunity to exploit personalized health data to optimize clinical decision making and achieve personalized treatment recommendation. In this ta...
Electronic health records (EHR) have provided a great opportunity to exploit personalized health data to optimize clinical decision making and achieve personalized treatment recommendation. In this ta...
This talk focuses on the even-triggered cooperative control problem of heterogeneous multi-agent systems (MASs) using data-based reinforcement learning (RL) algorithm. To lower the communication and c...
强大学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。在过去的几十年中,强化学习在许多领域中取得了巨大的成功,尤其是由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发的AlphaGo,它是第一个...
In the last few years, the 3D GIS domain has developed rapidly, and has become increasingly accessible to different disciplines. 3D Spatial analysis of Built-up areas seems to be one of the most chall...
Reinforcement Learning (RL) has achieved many successes over the years in training autonomous agents to perform simple tasks. However, it takes a long time to learn a solution and this solution can us...
Reinforcement learning (RL) is concerned with the identification of optimal controls in Markov decision processes (MDPs) where no explicit model of the transition probabilities is available. Many exis...
The central theme motivating this dissertation is the desire to develop reinforcement learning algorithms that “just work” regardless of the domain in which they are applied. The largest impediment to...
Reinforcement Learning for Mapping Instructions to Actions。
Agent-based modeling (ABM) is a relatively new tool for use in electric power market research. At heart are software agents representing real-world stakeholders in the industry: utilities, power produ...
We propose a reinforcement learning solution to the \emph{soccer dribbling task}, a scenario in which a soccer agent has to go from the beginning to the end of a region keeping possession of the ball,...
This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian p...
In some reinforcement learning problems an agent may be provided with a set of input policies, perhaps learned from prior experience or provided by advisors. We present a reinforcement learning with p...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...