搜索结果: 1-15 共查到“知识库 非线性偏微分方程”相关记录312条 . 查询时间(0.718 秒)
非线性轴向运动梁的边界稳定性判据
非线性 轴向运动梁 边界稳定性 判据
2023/1/4
非线性不确定系统PID控制的理论基础
非线性 不确定系统 PID控制 理论基础
2023/1/5
分数阶非线性Schrodinger方程的守恒算法
分数阶非线性Schrodinger方程 谱方法 守恒律 收敛性 数值实验
2022/3/11
具波动算子非线性Schrodinger方程线性化差分格式
非线性Schrodinger方程 波动算子 收敛性 稳定性 线性化格式
2022/3/18
Robin边界条件下更一般化的非线性抛物问题全局解的存在性
爆破 抛物方程 Robin边界条件 全局解
2019/4/17
本文主要研究了Robin边界条件下更一般化的非线性抛物问题解的爆破现象以及全局解的存在性.通过对问题中的已知函数进行适当的假设,建立适当的辅助函数,应用微分不等式技术,当问题的解发生爆破时得到了解的爆破时间的下界.这种类型的下界在物理学、生物学、天文学等领域有着广泛的应用.同时,也推导了问题的解全局存在的条件.
一类2n阶非线性奇异边值问题的对称正解
奇异边值问题 对称正解 极值点
2018/10/8
考虑一类2n阶非线性奇异边值问题.应用不动点定理,在非线性条件下给出合适的条件并获得对称正解.将一些最近的结果进行扩展和改进.此外,还给出了一个示例来演示新的结果.
Dissipative behavior of some fully non-linear KdV-type equations
KdV-type equations Finite-difference methods Nonlinear dynamics
2015/10/8
The KdV equation can be considered as a special case of the general equationutCf .u/x−g.uxx/x D 0;> 0;wheref is
non-linear andg is linear, namelyf .u/ D u2=2 andg.v/ D v. As the parameter t...
Compactons in a Class of Nonlinearly Quintic Equations
Five nonlinear dispersion equation and linear equation the line the numerical simulation
2015/10/8
We introduce a nonlinear dispersive quintic equation. Its travelling waves are governed by a linear equation. We construct a large variety of explicit compact solitary waves with one or many humps. So...
AVERAGING OF HAMILTONIAN FLOWS WITH AN ERGODIC COMPONENT
ERGODIC COMPONENT Unperturbed flow
2015/9/29
We consider a process on T2, which consists of fast motion along the
stream lines of an incompressible periodic vector field perturbed by white
noise. It gives rise to a process on the graph n...
Consider a point mass falling vertically on an infinitely heavy
horizontal plate which oscillates periodically with period 2π in the vertical direction
and interacts with the particle by the l...
Nonlinear Dynamics and Chaos: Where do we go from here?
Dynamics and Chaos Colston conference
2015/8/25
In keeping with the spirit of the Colston conference on Nonlinear Dynam-
ics and Chaos, this chapter emphasizes ideas more than details, describing
my vision of how the bifurcation theory of multipl...