理学 >>> 数学 >>> 计算数学 >>> 常微分方程数值解 >>>
搜索结果: 1-15 共查到知识库 常微分方程数值解相关记录31条 . 查询时间(8.016 秒)
本文研究了(非负)条件弱鞅的极小值不等式,将相关文献中关于非负条件弱鞅的形如εPF(ciSi≤ε)的极小值不等式推广到εPF(cig(Si)≤ε)的情形下.此外,本文还给出了条件弱鞅的形如εPF(g(Si)≤ε)和εPF(g(Si)≤-ε)的极小值不等式.
The fundamental “two-fluid” model for describing plasma dynamics is given by the EulerMaxwell system, in which compressible ion and electron fluids interact with their own self-consistent ...
Any classical solution of the 2D incompressible Euler equation is global in time. However, it remains an outstanding open problem whether classical solutions of the surface quasi-geostrophic (SQG) equ...
通过讨论光滑Weyl和的任意幂次均值的数值上界之间的关系,本文给出了幂次为区间[4,5]中的值时相应均值的数值上界的一些新结果.
研究了跳扩散过程下期权价值所满足\,PIDE\,方程的数值计算方法. 利用四阶差分格式对空间离散, 引入四阶\,Lagrange\,插值多项式对边界进行延拓, 得到一个非齐次线性系统. 基于矩阵指数的\,$\mathrm{Pad\acute{e}}$\,逼近方法及其分数表示形式, 构建了一种高阶光滑\,Crank-Nicolson\,差分格式. 数值计算验证了该种方法的有效性, 讨论了跳跃强度对标...
运用拉普拉斯变换求解梁的挠曲线近似微分方程, 并利用坐标系平移变换导出了分段梁挠曲线方程的一般形式, 通过算例验证简述了用此方法可方便地根据弯矩方程和边界条件求出梁各段挠曲线方程的表达式.
We present and analyze a multigrid algorithm for the acoustic single layer equation in two dimensions. The boundary element formulation of the equation is based on piecewise constant test functions an...
研究非线性三阶向量常微分方程的奇摄动边值问题. 在一定的条件下, 转变所给方程为对角化系统, 然后去求解等价的积分方程, 再用逐步逼近法和不动点原理, 证得摄动问题解的存在并给出渐近估计. 最后, 给出了若干应用例子.
本文讨论求解刚性随机延迟微分方程的平衡方法.证明了随机延迟微分方程平衡方法的均方收敛阶为 1/2.给出了线性随机延迟微分方程平衡方法均方稳定的条件.
In the present article we introduce two new general methods to compute the Chow motives of homogeneous varieties.
Two possible diagnostics of stretching and folding (S&F) in fluid flows are discussed, based on the dynamics of the gradient of potential vor-ticity (q = ω · ∇) associated with solutions of the...
We discuss a new family of solutions of the Grad–Shafranov GS equation that describes D-shaped to roidal plasma equilibria with sharp gradients at the plasma edge. These solutions have been derived ...
For a graph G, Chartrand et al. defined the rainbow connection number rc(G)and the strong rainbow connection number src(G) in “G. Charand, G.L. John,K.A. Mckeon, P. Zhang, Rainbow connection in graphs...
The Tutte polynomial G(X, Y ) of a graph G is a classical invariant,important in combinatorics and statistical mechanics. An important feature of the Tutte polynomial is the duality for planar graphs...
This article is devoted to the number of non-negative solu-tions of the linear Diophantine equation a1t1 + a2t2 + · · · antn = d,

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...