理学 >>> 数学 >>> 数理逻辑与数学基础 >>> 演绎逻辑学 证明论 递归论 模型论 公理集合论 数学基础 数理逻辑与数学基础其他学科
搜索结果: 1-9 共查到数理逻辑与数学基础 w-function相关记录9条 . 查询时间(0.093 秒)
Abstract: New recursion relations for the Riemann zeta function are introduced. Their derivation started from the standard functional equation. The new functional equations have both real and imaginar...
We provide a constructive proof on the equivalence of two fundamental concepts: the global Lyapunov function in engineering and the potential function in physics, establishing a bridge be-tween these...
It is proved that among the rational iterations locally converging with order s>1 to the sign function, the Pad\'e iterations and their reciprocals are the unique rationals with the lowest sum of the ...
We introduce a Bernoulli operator,let "B" denote the operator symbol,for n=0,1,2,3,... let ${B^n}: = {B_n}$ (where ${B_n}$ are Bernoulli numbers,${B_0} = 1,B{}_1 = 1/2,{B_2} = 1/6,{B_3} = 0$...).We o...
We study an asymptotic behavior of the sum $\sum\limits_{n\le x}\frac{\D \tau(n)}{\D \tau(n+a)}$. Here $\tau(n)$ denotes the number of divisors of $n$ and $a\ge 1$ is a fixed integer.
A new parametric integral is obtained as a consequence of the Riemann hypothesis. An asymptotic multiplicability is the main property of this integral
Let $\Psi(n):=n\prod_{p | n}(1+\frac{1}{p})$ denote the Dedekind $\Psi$ function. Define, for $n\ge 3,$ the ratio $R(n):=\frac{\Psi(n)}{n\log\log n}.$ We prove unconditionally that $R(n)\le e^\gamma$...
We examine Bourbaki's function, an easily-constructed continu-ous but nowhere-di erentiable function, and explore properties including func-tional identities, the antiderivative, and the box dimension...
We show that the frequent claim that the implied tree prices exotic options consistently with the market is untrue if the local volatilities are subject to change and the market is arbitrage-free. In...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...