搜索结果: 1-7 共查到“线性代数 Parabolic”相关记录7条 . 查询时间(0.015 秒)
Global-in-time Uniform Convergence for Linear Hyperbolic-Parabolic Singular Perturbations
Parabolic equations Damped hyperbolic equations Singular perturbations
2007/12/12
We consider the Cauchy problem ${\varepsilon}{u_{\ep}}''+\delta{u_{\ep}}'+A{u_{\varepsilon}}=0,$ ${u_{\varepsilon}}(0)=u_0, $ ${u_{\varepsilon}}'(0)=u_{1},$ where ${\varepsilon}>0$, $\delta>0$, $H$ is...
The boundary value problem for the nonlinear parabolic system is
solved by the finite difference method with nonuniform meshes. The existence
and a priori estemates of the discrete vector solutions ...
The multigrid algorithm in [13] is developed for solving nonlinear parabolic equations arising from the finite element discretization. The computational cost of the algorithm is approximate $O(N_kN)$ ...
Global Existence and Nonexistence for a Strongly Coupled Parabolic System with Nonlinear Boundary Conditions
Strongly coupled Global existence Finite time blow-up Upper and lower solutions
2007/12/10
This paper deals with the strongly coupled parabolic system $u_{t}=v^{m}{\Delta}u,v_{t}=u^{n}{\Delta}v,\ (x,t)$ $\in {\Omega}\times (0,T)$ subject to nonlinear boundary conditions ${\partial}u/{\parti...
BLOW-UP SOLUTIONS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS WITH MIXED BOUNDARY CONDITIONS
2007/8/7
The type of problem under consideration is$$\left\{\begin{array}{ll}u_{t}=\nabla(a(u)b(x)\nabla u)+g(x,q,t)f(u)&$in$ \ D\!\times\!(0,T),\\[1mm]\displaystyle u=0 \ $on$ \ {\it \Gamma}_1\!\times\!(0,T),...
专著信息
书名
Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions
语种
英文
撰写或编译
作者
王术
第一作者单位
出版社
Journal of Differential Equations, 182(2002), 431-469
出版地
出版日期
2002年
月
日
标...
Long time behavior of the solutions for coupled parabolic systems without monotone nonlinearities
2007/7/28
期刊信息
篇名
Long time behavior of the solutions for coupled parabolic systems without monotone nonlinearities
语种
英文
撰写或编译
作者
王元明
第一作者单位
刊物名称
Dynamic Systems and Applications
页面
10, 117—132, 2001,03
出版日期
2...