搜索结果: 1-7 共查到“数学物理 1--D Hamilton”相关记录7条 . 查询时间(0.062 秒)
A Hamilton-Jacobi Theory for Singular Lagrangian Systems in the Skinner and Rusk Setting
Hamilton-Jacobi theory presymplectic constraint algorithm
2012/5/9
We develop a Hamilton-Jacobi theory for singular lagrangian systems in the Skinner-Rusk formalism. Comparisons with the Hamilton-Jacobi problem in the lagrangian and hamiltonian settings are discussed...
Hamilton's principle is extended to have compatible initial conditions to the strong form. To use a number of computational and theoretical benefits for dynamical systems, the mixed variational formul...
Eigenvalue equation for a 1--D Hamilton function in deformation quantization
1--D Hamilton Eigenvalue equation deformation quantization
2011/7/25
Abstract: The choice of coordinates: time and energy as the most convenient for an eigenvalue equation for a 1--D nonrelativistic Hamiltonian in frames of deformation quantization has been proposed. A...
本文在半单Lie代数的Chevalley正则基下给出了二维WZNW场论的Hamilton形式,并在此基础上计算了守恒流之间的Poisson括号,结果正是经典的Kac-Moody流代数.
基于有限自由度奇异Lagrange量系统的相空间Green函数生成泛函,导出了该系统在定域变换下的量子Noether恒等式,并指出无论变换的Jacobi行列式是否为1,结论均成立,且在某些情况下,由量子Noether恒等式可导出量子守恒律.利用量子运动方程,量子Noether恒等式可转化为量子(弱)守恒律,这种导致量子守恒律的程式有别于量子水平的Noether第1定理.
Hamilton-Jacobi Formulation of Siegel Superparticle
Hamilton-Jacobi formalism Singular Lagrangian
2010/4/9
The Hamilton-Jacobi formalism of constrained systems is used to study Siegel superparticles moving in R4 mid 4 flat superspace. The equations of motion for a singular system are obtained as total diff...
Multiple Scale and Hamilton-Jacobi Analysis of Extended Mathieu Equation
Van der Pol multiple scale Von Zeipel hamiltonian
2010/4/12
In this study, we use perturbation approximations and semiclassical methods to investigate the boundary solutions of non-linear vibrating systems. The extended Mathieu Equation, related to the perturb...