搜索结果: 1-15 共查到“知识库 Leibniz”相关记录22条 . 查询时间(0.069 秒)
Was Leibniz the First Spacetime Structuralist?
Leibniz Clarke Leibniz-Clarke Correspondence Belot space spacetime structuralism relationism modal relationism substantivalism structural realism ontic structural realism
2016/5/31
I argue that the standard interpretation of Leibniz as a relationist about space is mistaken, and defend a reading according to which his correspondence with Samuel Clarke actually suggests that Leibn...
Linguistik und Völkerkunde – der Beitrag der historisch-vergleichenden Linguistik von G.W. Leibniz zur Entstehung der Völkerkunde im 18. Jahrhundert [Leicht erweiterte Fassung des Working Papers No. 133 aus dem MPI for Social Anthropology]
Linguistik Vö lkerkunde der Beitrag der historisch-vergleichenden G.W. Leibniz Vö lkerkunde 18. Jahrhundert
2015/3/26
Linguistik und Völkerkunde – der Beitrag der historisch-vergleichenden Linguistik von G.W. Leibniz zur Entstehung der Völkerkunde im 18. Jahrhundert [Leicht erweiterte Fassung des Working Pa...
低维Hom-Leibniz代数分类
Hom-Leibniz代数 自同态 分类
2014/1/8
运用待定系数法确定了复数域上的二维和三维Leibniz代数的自同态, 进而对相关非李代数的Hom-Leibniz代数进行了分类.
Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond
Berkeley continuum infinitesimal law of continuity law of homogeneity Leibniz Robinson Stevin
2012/5/9
Many historians of the calculus deny significant continuity between infinitesimal calculus of the 17th century and 20th century developments such as Robinson's theory. Robinson's hyperreals, while pro...
Leibniz algebras on symplectic plane and cohomological vector fields
Leibniz algebras symplectic-Poisson geometry anti-cyclic operads Quantum Algebra
2011/9/16
Abstract: By using help of algebraic operad theory, Leibniz algebra theory and symplectic-Poisson geometry are connected. We introduce the notion of cohomological vector field defined on nongraded sym...
A scale-invariant probabilistic model based on Leibniz-like pyramids
scale-invariant probabilistic model Leibniz-like pyramids Statistical Mechanics
2011/9/29
Abstract: We introduce a family of probabilistic {\it scale-invariant} Leibniz-like pyramids and $(d+1)$-dimensional hyperpyramids ($d=1,2,3,...$), characterized by a parameter $\nu>0$, whose value de...
Abstract: We define Leibniz triple systems in a functorial manner using the algorithm of Kolesnikov and Pozhidaev which converts identities for algebras into identities for dialgebras. We verify that ...
Leibniz Equivalence. On Leibniz's (Bad) Influence on the Logical Empiricist Interpretation of General Relativity
Gottfried Wilhelm Leibniz Logical Empiricism Philosophical interpretations of General Relativity Point-coincindence argument Hole Argument Indiscernibility arguments Felix Hausdorff Hermann Wey
2011/9/8
Einstein抯 損oint-coincidence argument'?as a response to the 揾ole argument?is usually considered as an expression of 揕eibniz equivalence,?a restatement of indiscernibility in the sense of Leibniz. Throu...
I give a simpler proof of the generalisation of Engel’s Theorem to Leibniz algebras.
On the description of the Leibniz algebras with nilindex n-3
description of the Leibniz algebras nilindex n-3
2011/1/20
In this paper we present the classification of a subclass of natu-rally graded Leibniz algebras. These n-dimensional Leibniz algebras have the characteristic sequence equal to (n−3, 3). For this...
Leibniz 2-algebras and twisted Courant algebroids
Leibniz 2-algebras L1-algebras omni-Lie 2-algebras
2011/2/28
In this paper, we give the categorification of Leibniz algebras, which is equivalent to 2-term
sh Leibniz algebras. They reveal the algebraic structure of omni-Lie 2-algebras introduced
in [22] as w...
Leibniz's Principles and Topological Extensions
topological extensions nonstandard models transfer principle
2011/2/24
Three philosophical principles are often quoted in connection with Leib-niz: “objects sharing the same properties are the same object”, “everything can possibly exist, unless it yields contradiction”,...
This article gives a local answer to the coquecigrue problem. Hereby we mean the problem, formulated by J-L. Loday in \cite{LodayEns}, is that of finding a generalization of the Lie's third theorem fo...
Some basic properties of Hom-Leibniz algebras are found. These properties are the Hom-analogue of corresponding well-known properties of Leibniz algebras. Considering the Hom-Akivis algebra associate...
On a class of n-Leibniz deformations of the simple Filippov algebras
n-Leibniz deformations simple Filippov algebras
2010/12/6
We study the problem of infinitesimal deformations of all real sim-ple finite-dimensional Filippov (or n-Lie) algebras considered as a class of n-Leibniz algebras characterized by having a n-bracket s...